2018 Recap: Highlights from an Innovative Year in Product Development

December 27, 2018 Eira Long May

Rendering of the experimental X-59 QueSST, courtesy NASA.

It was a mind-bending year for some of the most innovative companies on the planet. From relentless advances in autonomous driving to Starman orbiting Mars to getting a firmer handle on the future of agriculture, there were some dizzyingly inspirational moments in 2018.

To recap the busy year, we compiled a far-from-comprehensive list of some of the most notable moments from product development teams that are pushing the boundaries of what’s possible and solving problems that will improve the quality of life for millions…sometimes with help from Jama.

Lyft demonstrating its driverless technology, powered by partner Aptiv, at CES 2018.

Tesla, Waymo, Lyft and Panasonic take differing data strategies to advance autonomous driving

Human drivers have plenty of information about how other drivers behave on the road, and driverless cars need that data too. Tesla and Waymo, which started life as Google’s self-driving car project, are at the forefront of this effort to collect and process enough data to develop a reliable autonomous vehicle.

The two companies are taking very different approaches to the challenge, reported The Verge in April: Tesla, leveraging the hundreds of thousands of cars it already has on the road, is collecting real-world data about how vehicles perform with its current semi-autonomous system, Autopilot. Waymo, meanwhile, is using robust computer simulations to drive the development of a small real-world fleet of autonomous cars.

Elsewhere, in a decisive step in the direction of self-driving cars, Jama customer Lyft acquired London-based augmented reality (AR) startup Blue Vision Labs. Blue Vision has developed a way of using street-level imagery to build “collaborative, interactive reality layers” using images captured by smartphone cameras, reports TechCrunch. This technology is crucial to Lyft’s vision for autonomous vehicles, which was on display earlier this year at CES 2018 (pictured above). Both Lyft and arch-competitor Uber are expected to file IPOs in the first half of 2019.

Not to be left out, Panasonic North America announced in August that it was developing a cloud-based data platform called C-V2X (V2X stands for “vehicles to everything”) that pushes traffic information out to users, such as the Colorado Department of Transportation — which we interviewed earlier this year. Cars with C-V2X technology, according to The Denver Post, send out signals 10 times a second to roadside sensors, conveying information about speed and direction from internal sensors such as breaks and airbags. Transportation workers can use Panasonic’s data platform to monitor the road grid and spot problems before they snowball. The system can also deliver customized, time-sensitive messages directly into equipped vehicles.

NVIDIA digs deeper into autonomous driving

During his January keynote at CES 2018, NVIDIA founder and CEO Jensen Huang spoke about the importance of traceability in developing functional safety systems for the autonomous car market. With what Huang calls an “extraordinarily complex” development process, traceability is crucial to achieving safety and functionality. That way, Huang says, “If something were to happen, we could trace it all the way back to its source to improve and mitigate risk in the future.” We may not be used to thinking about traceability as a central concern for semiconductor companies like NVIDIA, but Huang’s keynote reminds us that, as product development grows increasingly complex, traceability is relevant for everyone.

In November, self-driving car startup Optimus Ride announced that it had selected NVIDIA’s Drive AGX Xavier as its development platform of choice for autonomous vehicles. A purpose-built platform for developing autonomous driving systems, Xavier is an open, scalable software/hardware solution designed to streamline development and production for companies working on driverless cars. Optimus Ride founder and CEO Ryan Chin says the company will use Xavier to create Level 4 autonomous vehicles, meaning the cars will operate in specific conditions and locations with limited human oversight and input. (In other words, yes, you can take a nap – as long as the car is on normal, mapped roads.)

Also in November, NVIDIA announced three new deals with Chinese electric car companies to develop technology for autonomous vehicles. These companies – Xpeng Motors, Singulato Motors and SF Motors – join other customers of Nvidia’s Xavier platform, including Uber, Volkswagen, Mercedes and Audi. Xpeng will begin building Level 3 autonomous capabilities into vehicles in 2020. A vehicle with Level 3 autonomy can drive by itself, but the driver must stay alert and ready to take control. Singulato and Volvo – yet another Xavier customer – are also planning to release Level 4 cars in the next two years.

Tesla’s Starman has now made it beyond the orbit of Mars, according to reports. Image courtesy SpaceX.

Experimental supersonic plane from NASA and Lockheed Martin announced; SpaceX makes history

In June, Lockheed Martin and NASA — a Jama customer — announced they were building an experimental supersonic plane designed to shed the deafening sonic booms normally associated with super-fast airplanes. Peter Coen, project manager for NASA’s Commercial Supersonic Technology Project, described the X-59 QueSST as “a research aircraft flown by a single pilot” in a statement sent to Newsweek. The X-59 QueSST isn’t designed for commercial use, but as a research craft, Coen hopes it will “open the door a to future generation of quiet supersonic travel.” The X-59 QueSST is set to hit the skies in late 2022.

In February, another Jama customer, SpaceX, made history by launching the world’s most powerful operational rocket from the Kennedy Space Center in Florida. SpaceX’s Falcon Heavy rocket launched its payload – Elon Musk’s red Tesla Roadster – toward Mars. In the Tesla sits the Starman, a mannequin wearing SpaceX-designed spacesuit. Starman’s journey, which was originally streamed live on YouTube, has now taken him beyond Mars’s orbit, SpaceX announced in November. The successful Falcon Heavy launch set the stage for faster, cheaper launches of national security satellites and other cargo.

Sowing the future of agriculture around the world with tech

Agricultural technology (agri-tech) is booming in Africa, with investments in agri-tech startups surging by 110% since 2016, according to Forbes. In fact, there were more than 80 agri-tech startups operating in Africa at the beginning of 2018, says Forbes, and over half of those were launched in the last two years.

The reasons for the boom were summed up by Tom Jackson, cofounder of Disrupt Africa: “Everyone knows how important the agricultural sector is across Africa, but until very recently it remained relatively untouched by tech innovators,” he told Forbes. “That is suddenly changing as entrepreneurs and investors realize the scale of the challenges facing farmers, and spot opportunities to reach huge addressable markets.” Kenya, Nigeria and Ghana are the current leaders in the agri-tech market.

And speaking of agriculture: By the year 2050, according to a Duke University researcher, we will need to double our current food production to feed the estimated 9.6 billion people on Earth. Part of the answer lies in “precision agriculture,” which involves integrating technology and farming to maximize production, increase efficiency and minimize waste.

For instance, drones are being developed that are equipped with sophisticated sensors can be flown over thousands of acres to gather data on pest damage, crop stress, yield and other factors. Farmers can use drone-captured images to monitor what’s going on and make adjustments where necessary. Some drones can even plant and water crops, while others help farmers determine how much pesticide or fertilizer is needed.

The Apple Watch Series 4 boasts improved fitness and health capabilities. Image courtesy Apple.

Apple, startups prove wearable medical device market extremely healthy

Wearable health-tracking devices have soared in popularity over the last decade as fitness enthusiasts look to quantify their exercise and health goals. But the technology is also finding a welcome home in the medical community, where patients with chronic conditions can use it to monitor their day-to-day health. As we reported in March, MIT spinoff Empatica’s smart watch, The Embrace, was granted FDA clearance to detect the most severe kinds of seizures for patients with epilepsy, while tracking the frequency and duration of the seizures. In fact, Empatica was able to get the product off the ground thanks to a 2015 Indiegogo campaign that raised $800,000, more than 500% of its funding goal.

On a similar note, the Apple Watch 4 released in September was cleared as a Class II medical device by the FDA. As Forbes reports, the watch offers fall detection and three new heart monitoring capabilities: low heart rate alert, heart rhythm detection and a personal electrocardiogram (ECG) monitor. Apple COO Jeff Williams stressed the watch’s potential as a health “guardian,” and noted that Apple Watch 4 is the first ECG product offered over-the-counter directly to customers.

Other wearable medical devices to hit the market this year, per Internet of Business, include sensors for monitoring recovery in stroke patients. Coordinating care for patients recovering from strokes is complex and daunting, and has traditionally required equipment that comes with a tangle of wires – making it tough for patients to resume daily activity and be at home. Northwestern University has developed stretchable, comfortable sensors that are subtle and noninvasive. These wearables give both doctors and patient precise data about all parts of the body without cumbersome wires.

IIoT leveraged for disaster prevention

Companies pioneering Industrial Internet of Things (IIoT) infrastructure are developing ways to prevent industrial disasters through automation, reports PC Magazine. IIoT platforms offer real-time embedded systems, virtualization and AI designed to save lives – and billions of dollars in disaster damage. With these platforms, plant owners and operators can react more quickly in emergencies, thereby protecting the safety of their employees, the surrounding population and the planet.

Ultimately, says Jim Douglas, president and CEO of Wind River, told PC Magazine that IIoT technology is leading us toward automation: “The next wave is machines that are either fully autonomous or partially autonomous…you can have people be more focused on higher-level tasks and let the robots do the lower-level tasks.”

To learn more about how Jama helps organizations thrive in critical product markets by reducing risk and providing a single source of truth, download Frost & Sullivan’s recent executive brief,“Safeguarding Regulated Products Amidst Growing Complexity.”

Previous Article
How Better Data Improves Your Development Process
How Better Data Improves Your Development Process

Explore how proper data collection and analysis can make your product development process more predictable.

Next Article
Why 2018 was a Remarkable Year for Jama Software
Why 2018 was a Remarkable Year for Jama Software

In my eyes, 2018 was one of the most significant years in Jama Software’s history. From launching new produ...